



# Volatile Organic Compounds (VOC) Detection & Measurement Techniques

Marc Debliquy, Driss Lahem

6th European workshop on VOC's Dunkerque, June 23rd

 $\bigcirc$  B-SENS

# MATERIALS R&D CENTRE

## Context

## What are Volatile Organic Compounds?

All organic compounds (except methane) having a vapor pressure > 0.01 kPa at 293.15 K or having a corresponding volatility in particular conditions

In pratice, the most studied VOC's are: Benzene, toluene, ethylbenzene, xylene (called BTEX) Formaldehyde, acetaldehyde

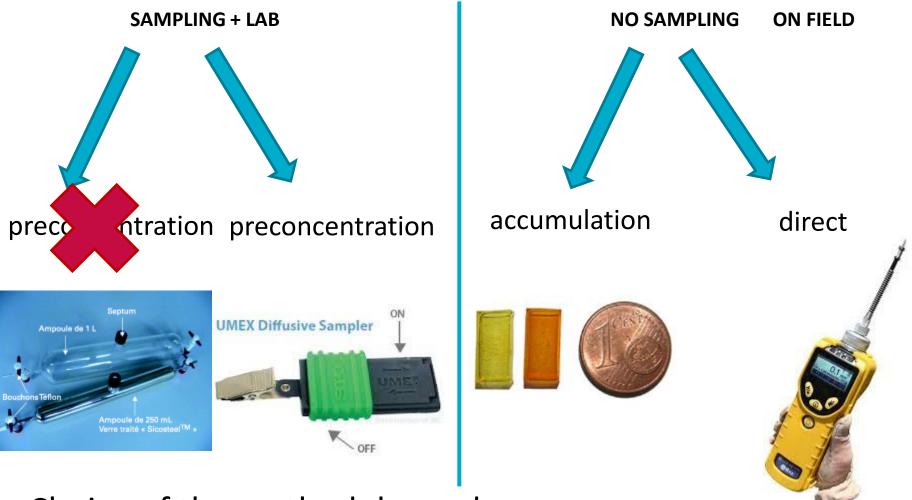
## Sources

Transport (combustibles, combustions)

Industry (solvents, combustions)

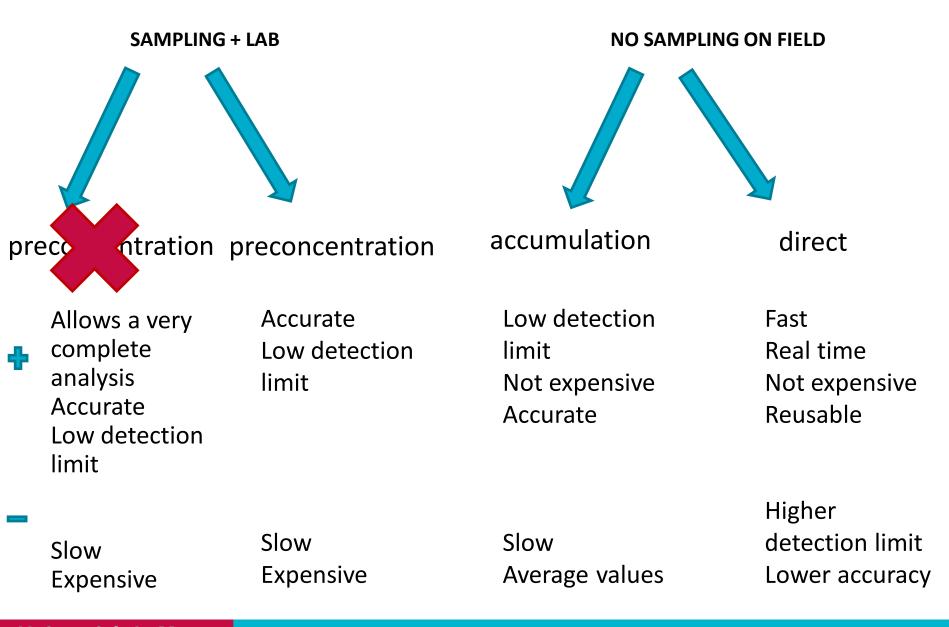
Agriculture

Domestic applications (paints, pesticides, glues, etc...)






Nuisances for environnement and health: asthma, lung attack, cancer Responsible of the sick building syndrome


- => Efforts to reduce the pollution
- => Measurement of the concentration in VOC for preventive actions

## Main analysis methods



Choice of the method depends on: concentration levels, response time and accuracy

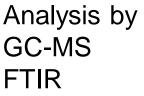
## **Main characteristics**



Université de Mons Pr Dr Ir Marc Debliquy | Sciences des Matériaux

# **Sampling without preconcentration**

#### Bags


Teflon FEP (hexafluoropropylène/tetrafluoroethylene), Mylar (polyester), Tedlar (PVF) Nalophan (polyethyleneterephtalate)

Allow sampling of large volumes (from 2 to 100 l) NF EN 13725 (2003),

#### **Glass tubes**

Avoid losses by adsorption on the walls Small volumes (<3 l)

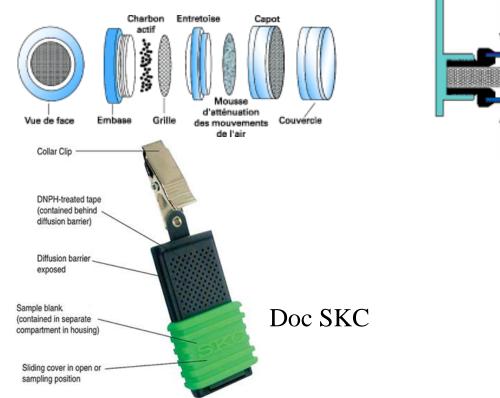




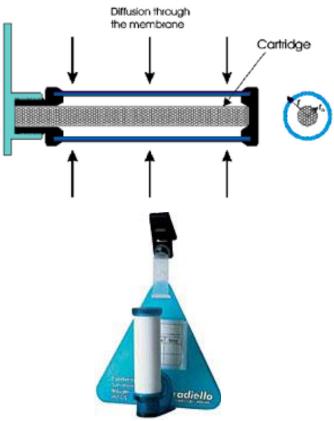
#### Canisters

Stainless steel convered with CrO<sub>3</sub>

Easy transport but problems of gas reactions




Université de Mons Pr Dr Ir Marc Debliquy | Sciences des Matériaux

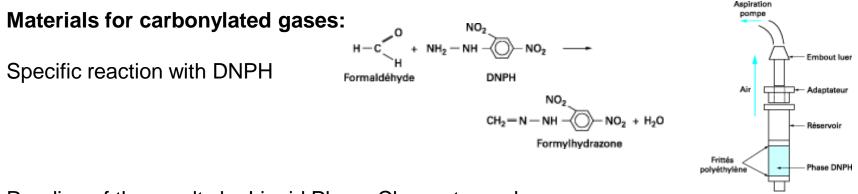

## **Sampling with preconcentration**

#### Adsorption on a cartridge filled with adsorbant

Active adsorption with a pump



Passive adsorption (diffusion)




Doc Radiello

# **Sampling with preconcentration**

### **Materials**

Distinction beween carbonylated (aldehydes and ketones) and non carbonylated



Reading of the results by Liquid Phase Chromatography

#### Materials for non carbonylated gases:

Porous materials with high specific surface area Active charcoal, Tenax

. . . .

Reading by Programmed Thermal Desorption in a special equipment (detection by MS or FID).

## **Accumulation methods**

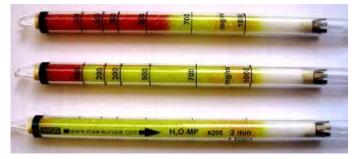
#### Principle

The target gases are ad(b)sorbed in a solid material and accumulate or react with a specific reagent. It results in a **permanent** physical or chemical change of the material properties that can be measured separatly.

Act as **dosimeters** and are not real time.

Not reusable!

#### For average concentrations during the exposure period.


#### **Measured properties**

Mass (increase of mass or thickness of a rectangular sample) Refractive index Colour Permittivity Conductivity

## **Colorimetric methods**

### **Reactive tubes**





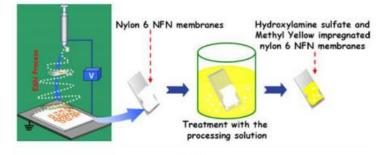


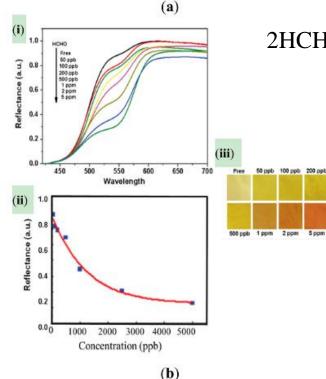
Badges



Front of VOC Chek 575

Back of VOC Chek 575 Sampler designed for easier analysis


Direct


Indirect

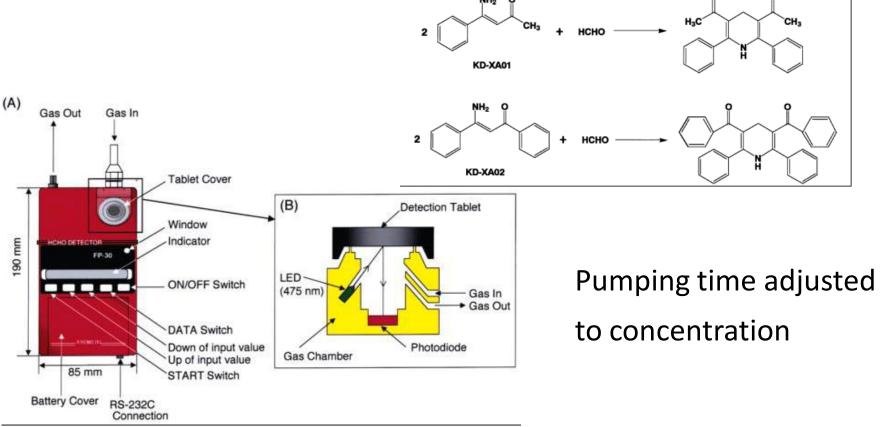


# **Colorimetric methods**

## Example with formaldehyde






#### $2HCHO + (NH_2OH)_2 \cdot H_2SO_4 \rightarrow 2H_2C = NOH + H_2SO_4 + 2H_2O$

#### Use of a pH indicator

5 ppm

# **Colorimetric methods**

# Formaldehyde detector with pumping system for immediate reading



Suzuki, Y.; Nakano, N.; Suzuki, K. Environ. Sci. Technol. 2003, 37, 5695–5700

## Sensors, detectors and analysers

Systems for direct, reversible and real time readings.



CE

fix

portable

Various physicochemical principles are used:

Photo Ionization Detectors Electrochemical cells Semiconductors

Systems can combine several sensors

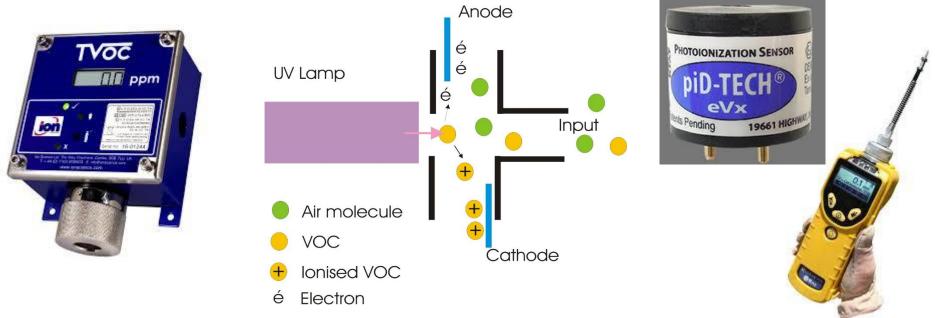
Others

AQ EXPERT



#### Specifications

| Parameter                       | r <mark>Sensor</mark> | Range                                       | Res.                            | Accuracy                             |
|---------------------------------|-----------------------|---------------------------------------------|---------------------------------|--------------------------------------|
| CO <sub>2</sub>                 | NDIR                  | 0 - 5,000 ppm                               | 1 ppm                           | ±2% of rdg. ±10 ppm                  |
| CO2                             | NDIR                  | 0 - 20%                                     | 0.1%                            | ±3% of rdg.                          |
| CO'                             | Electrochemical       | 0 - 200 ppm                                 | 0.1 ppm                         | ±4% of rdg. ±0.5 ppm                 |
| % RH                            | Thin Film Capacitive  | 5 - 95% RH                                  | 0.1% RH                         | ±2% RH                               |
| Ambient<br>Temperature          | Pt100                 | -40 - 257°F<br>(-40 - 125°C)                | 0.1°C/F                         | ±2°F (32-140°F)<br>(±0.4°C [0-60°C]) |
| VOCs                            | PID                   | 0 - 20,000 ppb<br>(0 - 46,000 μg/m³)        | 1 ppb<br>(1 µg/m³)              | ±10 % of rdg. ±20 ppb                |
| VOCs                            | PID                   | 0 - 200 ppm<br>(0 - 460 mg/m <sup>3</sup> ) | 1 ppm<br>(1 mg/m <sup>3</sup> ) | ±10 % of rdg. ±2 ppm                 |
| <b>O</b> <sub>2</sub>           | Electrochemical       | 0 - 25%                                     | 0.1%                            | ±0.1% vol rdg.                       |
| Ozone (O <sub>3</sub> )         | Electrochemical       | 0 - 5 ppm                                   | 1 ppb                           |                                      |
| H <sub>2</sub> S <sup>1</sup>   | Electrochemical       | 0 - 100 ppm                                 | 1 ppm                           | ±4% of rdg. ± 0.5 ppm                |
| CH <sub>2</sub> O <sup>23</sup> | Electrochemical       | 0 - 10,000 ppb                              | 1 ppb                           | ±5% of rdg. ± 50 ppb                 |
| NO'                             | Electrochemical       | 0 - 250 ppm                                 | 0.1 ppm                         | ±4% of rdg. ±0.5 ppm                 |
| NO <sub>2</sub> <sup>1</sup>    | Electrochemical       | 0 - 20 ppm                                  | 0.1 ppm                         | ±4% of rdg. ±0.5 ppm                 |
| SO <sub>2</sub> <sup>1</sup>    | Electrochemical       | 0 - 20 ppm                                  | 0.1 ppm                         | ±4% of rdg. ±0.5 ppm                 |
| Barometric<br>Pressure          | Solid State           | 260 - 1260 mbar                             | 1 mbar                          | ±2 mbar                              |
| Differential<br>Pressure        | Bridge                | ±40.0 inH₂O<br>(±100 mbar)                  | 0.1 inH₂O<br>(0.25 mbar)        | ±1% of rdg.                          |
| Temperature<br>Type K T1 & T    | Tc K<br><b>[2</b>     | 0 - 2000°F<br>(0 - 1100°C)                  | 1°C/F                           | ±2% of rdg.                          |
| Air Velocity                    | Calculated            | 0 - 300 ft/sec                              | 1 ft/sec                        |                                      |
| Electromagnetic compatibility   |                       | EN 61326-1, Portable Equipment              |                                 |                                      |




#### Université de Mons Pr Dr Ir Marc Debliquy | Sciences des Matériaux

## **Photoionization detectors (PID)**

Based on the detection of ions produced by the impact of high energy photons (UV  $\sim$ 10 eV)

The ions are collected on electrodes and the current is proportional to the gas concentration.



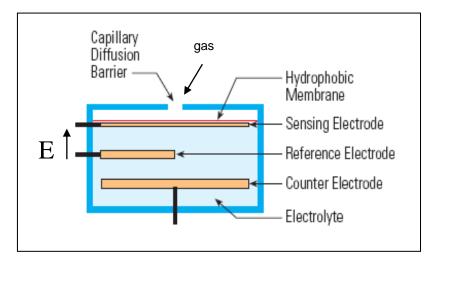
Sensitivity depends on molecular weight of the molecule (less sensitive for smaller molecules) (difficult for formaldehyde)

## **Photoionization detectors (PID)**

Can be very sensitive (< 1 ppm) Typical concentration ranges 0-20 ppm (LOD 20 ppb) or 0-1000 ppm

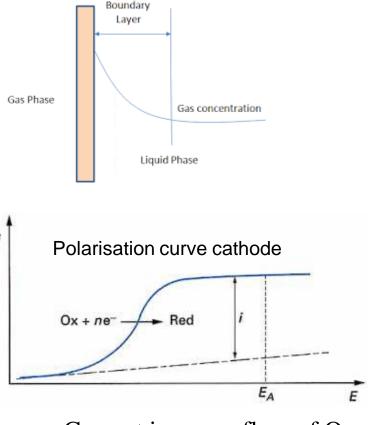
Not selective

Rapid (response time ~10s)


Regular calibration needed

Can be portable

Most used for rapid screening


## **Electrochemical sensors**

#### Amperometric sensors based on the limiting current measurement



If diffusion barrier mass flow of  $Ox \div C_{ox}$ 

=> Current i ÷ C<sub>ox</sub>



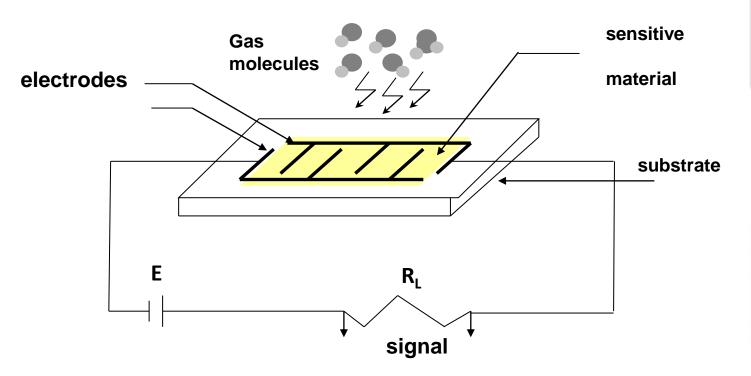
Current  $i \div mass$  flow of Ox

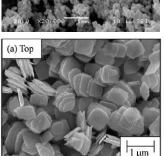
Signal = current through the cell  $\div C_{gas}$ 

## **Electrochemical sensors**

Typical concentration ranges 0-20 ppm (LOD 1 ppm)

Can be selective


Rapid (response time ~10s)


Regular calibration needed (lifetime < 2 y)

Can be portable

Mostly used for alarms

## **Semiconductor based gas sensors**





- Gas adsorption induces electrical conductivity variations  $\Delta \sigma = f(C_{gas})$
- Resistance measurement =  $C_{qas}$  measurement

## **Semiconductor based gas sensors**

**MEMS** substrate Ceramic substrate **Microfabrication** Active layer Ti/Au Contact pad for electrodes Protective resist (10/120 nm) ontact pad for TrPt/Ti SiO. (10/100/10 nm) 500 nm SiO. Silicon substrate

## **Semiconductor based gas sensors**

Very sensitive

Typical concentration ranges 0-2 ppm (LOD 10 ppb) for formaldehyde 0-100 ppm (LOD 1 ppm) for toluene

Poorly selective

Rapid (response time < 60s)

Easily inserted in electronic boards

Lifetime ~ 5 y

Mostly used for alarms



## **Conclusions**

- Different technologies exist for the measurement of the VOC's.
- In general, the most accurate are based on sampling and analysis in the lab but they are absolutely not real time and quite expensive.
- □ New technologies are now in development in the
- field of sensors and low cost detectors